Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Gerontol A Biol Sci Med Sci ; 78(11): 1944-1952, 2023 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-37453137

RESUMEN

Alzheimer's disease (AD) is the most prevalent type of dementia globally. The accumulation of amyloid-beta (Aß) extracellular senile plaques in the brain is one of the hallmark mechanisms found in AD. Aß42 is the most damaging and aggressively aggregating Aß isomer produced in the brain. Although Aß42 has been extensively researched as a crucial peptide connected to the development of the characteristic amyloid fibrils in AD, the specifics of its pathophysiology are still unknown. Therefore, the main objective was to identify novel compounds that could potentially mitigate the negative effects of Aß42. 3-[[(3S)-1,2,3,4-Tetrahydroisoquinoline-3-carbonyl]amino]propanoic acid (THICAPA) was identified as a ligand for Aß42 and for reducing fibrillary Aß42 aggregation. THICAPA also improved cell viability when administered to PC12 neuronal cells that were exposed to Aß42. Additionally, this compound diminished Aß42 toxicity in the current AD Drosophila model by rescuing the rough eye phenotype, prolonging the life span, and enhancing motor functions. Through next-generation RNA-sequencing, immune response pathways were downregulated in response to THICAPA treatment. Thus, this study suggests THICAPA as a possible disease-modifying treatment for AD.


Asunto(s)
Enfermedad de Alzheimer , Tetrahidroisoquinolinas , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Drosophila/metabolismo , Propionatos/farmacología , Péptidos beta-Amiloides/metabolismo , Fragmentos de Péptidos , Tetrahidroisoquinolinas/farmacología
2.
J Ethnopharmacol ; 279: 114389, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34217797

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Danshen water extract (DWE), obtained from the Salvia miltiorrhiza Bunge (Family Lamiaceae) root, is usually employed in Chinese traditional medicine as treatment to cardiovascular ailments and cerebrovascular diseases. Intriguingly, the extract was also found to contain vast beneficial properties in Alzheimer's disease (AD) treatment. AIM OF THE STUDY: Alzheimer's disease is the most significant type of neurodegenerative disorder plaguing societies globally. Its pathogenesis encompasses the hallmark aggregation of amyloid-beta (Aß). Of all the Aß oligomers formed in the brain, Aß42 is the most toxic and aggressive. Despite this, the mechanism behind this disease remains elusive. In this study, DWE, and its major components, Salvianolic acid A (SalA) and Salvianolic acid B (SalB) were tested for their abilities to attenuate Aß42's toxic effects. METHODS: The composition of DWE was determined via Ultra-Performance Liquid Chromatography (UPLC). DWE, SalA and SalB were first verified for their capability to diminish Aß42 fibrillation using an in vitro activity assay. Since Aß42 aggregation results in neuronal degeneration, the potential Aß42 inhibitors were next evaluated on Aß42-exposed PC12 neuronal cells. The Drosophila melanogaster AD model was then employed to determine the effects of DWE, SalA and SalB. RESULTS: DWE, SalA and SalB were shown to be able to reduce fibrillation of Aß42. When tested on PC12 neuronal cells, DWE, SalA and SalB ameliorated cells from cell death associated with Aß42 exposure. Next, DWE and its components were tested on the Drosophila melanogaster AD model and their rescue effects were further characterized. The UPLC analysis showed that SalA and SalB were present in the brains and bodies of Drosophila after DWE feeding. When human Aß42 was expressed, the AD Drosophila exhibited degenerated eye structures known as the rough eye phenotype (REP), reduced lifespan and deteriorated locomotor ability. Administration of DWE, SalA and SalB partially reverted the REP, increased the age of AD Drosophila and improved most of the mobility of AD Drosophila. CONCLUSION: Collectively, DWE and its components may have therapeutic potential for AD patients and possibly other forms of brain diseases.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Benzofuranos/farmacología , Ácidos Cafeicos/farmacología , Lactatos/farmacología , Neuronas/efectos de los fármacos , Fitoterapia , Salvia miltiorrhiza/química , Péptidos beta-Amiloides/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Drosophila melanogaster , Femenino , Células PC12 , Fragmentos de Péptidos/metabolismo , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...